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Overview

e Energy, momentum, and density preservation can be achieved with a
direct Galerkin discretization using a second order basis. This
property translates also to temporal discretization as long as the
nonlinear system of equations is solved to machine precision.

e Positivity preservation algebraically, without breaking the inherent
conservation laws, has been a challenge.

e Exponential mapping of the distribution function together with
so-called discrete gradient methods for temporal discretization,
succeeds in providing the conservation laws, strict positivity, and a
unique, physically exact equilibrium state.

e See arXiv:1804.08546 for the full story and a detailed list of relevant
references.


https://arxiv.org/abs/1804.08546
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Properties of the collision
operator



Time- and space-continuous collisional evolution

A distribution function f(v,t) : R? x R>q + Rxq is assumed to evolve
according to the equation

a2 [ow-o) (1L - sm ),
J

corresponding to the dynamics driven by the nonlinear Landau collision
operator. The dyad Q(¢) = (I — €£€)/|€] in the above expression is an
inversely scaled projection matrix with an eigenvector & corresponding to
zero eigenvalue, and € = &/|€|



A non-standard weak formulation of the problem

Given an arbitrary time-independent test function u(v), the collisional
relaxation problem can be formulated in a weak sense

d
M (u, f) = Cp(uIn f). (2)

The symmetric, bilinear forms M and C are defined according to

M (u,w) = /uw dv, (3)
R3
1 ou Ou
Crlw,w) = —3 // <8v - (‘)v>
R3 xR3

- F®)Qw — v') f(') - ((Zj - gjj’) dvde!.  (4)

The form Cf(u, w) is negative semidefinite, with a left-right null-space
consisting of functions ¢ = {|v|?, v, 1}.



Properties of the collision operator

The functions ¢(v) = {|v|?,v, 1} generate invariant forms M (¢, f)
corresponding to conservation of energy, momentum and density.

The equilibrium condition C'¢(u,In f) = 0, with respect to arbitrary u,
requires that In f is a linear combination of the functions
¢ = {|v|?,v,1}, f corresponding to a Maxwellian.

Since M(1, f) is an invariant and Cy(u,u) < 0, one finds that
M (—1In f, f) > 0, corresponding to entropy production.

Sign preservation: assuming f to be at least twice differentiable and
non-negative, then, at a point v* where f(v*) =0, 9, f(v*) =0, and
02, f(v*) is positive semi-definite, the evolution equation provides

2 — [awt - ) 25 >0 L
]R‘%




Spatial discretization



Introduce an exponentially-mapped Galerkin projection

Use the “In f hint” in the weak formulation and choose an ab initio
positive discretization

fn = exp(gn), gn =Yg (O)ti(v), (6)
iel
with {4;};cr a second order Galerkin basis with compact support, and

{9'}icr the degrees of freedom for gj,.

Finite-dimensional weak formulation using a test function u = )

> M( wwfhwj =Y " Cp, (i )9, Viel (7)

jeI jerl

Here, the integrals within the forms A/ and C are naturally limited to
the domain of support for the basis. Also, note that the square matrices
M (s, fnipj) and Cy, (1;,1;) depend on the degrees of freedom via f3,
and that while M (v, fn1;) is sparse, Cf, (1;, ;) is not.



Finite-dimensional collisional invariants

On the given mesh, the finite-dimensional versions of the energy,
momentum, and density functionals can be written as

(E7P7N) - Z(ei,vi, 1Z)M(¢)ufh) (8)

The coefficients {e'};cr, {v'}icr, and {1};c; correspond to the
expansion coefficients with respect to the chosen Galerkin basis for the

functions (|v|?,v,1), i.e.,

P =) ei(v)  v=) viiv), 1=) 1yi(v). (9)

i€l el icl



Conservation of the finite-dimensional invariants

The time derivatives of energy, momentum, and density vanish identically

— = &M wz,fhwj

t,J€1

dP ;

=Y o M futy)
i,je€l

= > 1'M( wz,fhwj

i,j€1

= Ch (Ze 1%%) g =0, (10)

jel el
=> "¢y, (val,(/)j)g =0, (11)
jerl el
=Y Cs, (le“wj)g =0. (12)
Jjel iel

This follows from the equations of motion for the degrees of freedom (7),
the bilinearity and the null-space of the form C¢(u,w), and the requested
property that the basis {1;};cr reproduces quadratic functions exactly.



H-theorem: equilibrium

Note that {e’};cr, {v'}ier, and {1%};cr are the only eigenvectors of the
matrix C', (15, ;), that correspond to zero eigenvalues.

Hence the equilibrium state géq is a linear combination
giq:aei—i—b-vi—l—cli, (13)

which, within the support of the Galerkin basis, corresponds to the
numerical distribution function

freq =exp (alv]* +b-v+c). (14)

Because the energy, momentum, and density are conserved, the
coefficients a, b, and ¢ are uniquely determined in terms of the moments
of a given initial state.



H-theorem: entropy production

Note that the entropy S = — [ fj, In fr,dv can be written as

S==> M(fn,¥i)g" (15)

el

It's time derivative then becomes

s dg' dg’ i
vy i ZNI(fh?wl)E - Z ﬁ]\/[(wjfhvwz)g
iel i,j€1
dN 8.4
=———— > Crn(wvi)g'g’ >0, (6
i,j€1

The last line follows from the density conservation and the fact that the
form C(u,w) is negative semidefinite, with the only nontrivial zero
solution being a linear combination of the operator’s null-space,
corresponding to the equilibrium state.
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Finite-dimensional metriplectic
structure




Rearrange the finite-dimensional system of equations

Multiply (7 ) with the inverse of M (v, fr;)

Z M~ l/Jk fh‘/’z) th(’/%adjj) ', Vkel. (17)

i,jel
Use the finite-dimensional entropy (15), it's derivative, and invert for
== M" %Jm/)e)ae, Vjel. (18)
el

Use the fact that vector 17 is an eigenvector of the matrix Cf, (;,v;)
with a zero eigenvalue, this gives

dg® oS
= == Gulg)gy Vkel, (19)
lel 9

where we have collected the individual matrices together into

Gre(g) = D M7 (Wn, fuths) Cr, (Wi, 95) M7 (9, futpe)- - (20)

i,j€1
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Finite-dimensional metriplectic structure

Using the chain rule, time derivative of a generic function U(g) becomes
du ou oS

— = = Gre(9) 7~
2 )
dt ol dg dg

Vkel, (21)

with the same matrix as previously

Gre(g) = D M~ (W, fuths) Cr (i, 95) MMy, frtpe).  (22)

i,j€1

The finite-dimensional metriplectic structure is then identifed as
av

2
where the bracket with respect to arbitrary functions A(g) and B(g) is
0A 0B
(A,B)= ) —5Grl9) 5y, Vkel (24)
kLT Og* dg*

The invariants are conserved and entropy produced as previously.
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Temporal discretization




Discrete Gradient methods: generic recipe

Given S(g), consider an ODE of the form

—:—ZGM 81,, Vkel. (25)
lel

Denote time instances with ¢g(dt) = g1 and g(0) = go. Discrete gradient
methods approximate the ODE according to

I 95
91 &go — ZGM 90,91]a 790, 91], Vkel (26)
el

The operator 9A/9g%(go, g1] is a discrete gradient and required to satisfy

A 0A 0A
2 3219091 (61 = 95) = Algr) ~ Algo), 551991 = 55(9)- (27)

Many such operators are known in the literature. Furthermore, requiring
Gre(g,9) = Gre(g) guarantees that the limit ¢ — 0 collapses (26) to
the correct time-continuous ODE (25).
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Discrete Gradient methods: entropy production

Using (27) and (26), the discrete evolution of a function U(g) satisfies

U _ a5
U(g1) — U(go) = =6t > afgk[go’gﬂer[go,gl]@[go,gl]- (28)
kel

Hence, as long as the matrix operator G¢[go, g1] is negative semidefinite,
entropy production will be guaranteed, according to

0S — 05
W[Qngl]Gki[gﬂvgl]@[gngl] >0. (29)

S(g1) — S(go) = =t >

kel

But what should the expression for G¢[go, g1] be? And how will it
guarantee the energy, momentum, and density conservation?
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Discrete Gradient methods: Casimir evolution

For all invariants C = (E, P, N), with ¢! = (e?, v*,1%), we have
3 —— =) MW, fatdr). (30)
i€l
A discrete gradient of the Casimirs is thus defined according to

C

agt [90, 91] = chﬁm[go,gl]; (31)

kel

where M;[go, g1] is required to satisfy My;[g, g] = M (v;, fatbx). Hence
the discrete evolution of the Casimirs satisfies

S
Clg1) — Clgo) = =6ty Y~ "My 90,91}sz[90,91]8 7190, 91]- (32)
i€l kel
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Discrete Gradient methods: Casimir invariance

To guarantee the invariance C'(g1) — C'(go) = 0, we should choose

— 1 — 1

Grelgo, 91] = Z My [90,91) Cp, (Yi,%05) M 4 [90,91],  (33)
ijel

where M;l[go,gl] is the inverse of M;;[go, g1]. This satisfies also

Gre(g,9) = Gre(g). The choice (33) then provides the desired result

; — 98
C(g1) — Clgo) = =0t > Y &Cy, (i, ) M, [90791]874[90,91] =0,

i€l jeel
(34)

which follows from the property that the basis {t; };c; can present the
functions ¢ = {|v|?, v, 1} exactly, and due to the null space of the form
C¢(u, w), which together lead to

> Cy, (i) =0, Vjel (35)

icl
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Discrete Gradient mehods: uniqueness of equilibrium

For an equilibrium state to exist, one must have g; = gg = geq. This
requirement, and the evolution equation (26), provides

_ oS
Z le[geqa geq]W[gem geq} =0, Vkel (36)
lel g

Next, using the defining properties 9S/9g%[geq; Jeq] = 0S/Dg"(geq) and
Grtlgeqs Geq] = Gre(geq), We obtain

aS
> Gre(9eq) 57 (9ea) =0, Vh € L. (37)
lel 9

From here the uniqueness of the equilibrium state follows trivially after
using (18) and the null-space argument, leading to the observation that
the numerical equilibrium state is given by

fheq(v) = exp(a|’u\2 +b-v+c), (38)
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Sparse system for iterative
solution




Average Discrete Gradient

Use the second order O(6t2) average discrete gradient

1
8 a7z 90791 / €)go + £g1)d€. (39)
0
Define the short notations
gho = Y _ g6tk gn1 =Y g¥. (40)
kel kel

Compute the matrix

Mi5(90, 91] / 3, SR 0n0) — D Gra) g, (41)
9gho — Gh1
and the vector
05 —1 1 —1) =1
%5 0.1 / e (gno — 1) exp (9n0) = (gn1 — 1) exp (gn1) -
g 9gho — ghl
(42)
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Sparse form suitable for iterative solution

Put everything together and obtain a sparse iterable system

Z]uzk: 90791 5 __Zcfh 1/2 wu%) Js Viel, (43)
kel jelI
85—1 .
ZA[” gngl - a i [JOagl]v Viel. (44)
Jjel

Given go, solving this system to machine precision for g; provides the
conservation laws the machine precision as well.
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